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Abstract. While there already exist a number of 2D and 3D pose esti-
mation models with high accuracy, in special domains like sports, which
usually require even higher accuracy, there are still spaces to be im-
proved. Existing pose models primarily focus on regular daily activities,
which, when being applied to precision sports, such as golf swings, still
face limitations. In fact, the rare poses and self-occlusions in golf swing
videos can easily mislead regular pose models. To overcome these chal-
lenges, we develop a small (2D and 3D) GolfSwing dataset that includes
both golfer and club poses. We then fine-tune state-of-the-art 2D and
3D posture models, including HRNet, ViTPose, DEKR, and MixSTE,
by GolfSwing into a set of models called GolfPose for golfer-club pose es-
timation with much higher accuracy. Such a simple-yet-effective method
may be generalized to other sports with self-occluded properties. Code
is available at https://github.com/MingHanLee/GolfPose.

Keywords: Human Pose Estimation · Golf · Motion Capture · Precision
Sports · Self Occlusion.

1 Introduction

Human pose estimation (HPE) has been intensively studied in computer vision
and sensor fields. Solutions can be categorized as 2D and 3D ones. Image-based
2D HPE models are proposed in[2,31,8], while 3D postures can be derived by
regression [32,12,17] or by 2D-to-3D lifting [28,25]. There are wide ranges of pose
applications in sports, including using rugby players’ poses to evaluate the risk
of concussion during a tackle [27], predicting 3D flight trajectory of badminton
[20], incorporating a 3D geometry of the scene to enhance the accuracy of 3D
HPE [1], and comparing the pose differences between professional and amateur
runners using PoseCoach [19].

In this work, we consider the inference of golf swing videos taken by an
off-the-shelf RGB camera. Golf has been increasingly popular in recent years.
Golf swings directly impact performance. The studies [44,26] utilized motion
capture systems to collect golf swing poses and analyze its relation with injuries.
References [14,13] used HPE to identify key frames in golf swing videos and assess
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the effectiveness of a swing. How to employ deep learning to coach a beginner’s
swings based on experts’ ones is addressed in [15]. A similar study based on
motion capturing is in [16]. The GolfDB dataset [23] consists of 1,400 videos
of professional golfers’ swings with event frames and bounding boxes labeled.
However, the dataset is 2-dimensional and lacks pose keypoint annotations.

Our goal is to estimate both 2D and 3D golfer-with-club postures through a
normal RGB camera. To the best of our knowledge, there is no dataset containing
all such annotations. We first develop a small GolfSwing dataset by a high-
quality motion capture system, which features ground truth of 3D golfer-with-
club keypoints. There are 17 keypoints for golfer and 5 keypoints for club. We
further synchronize these information with normal RGB cameras and project
these 3D keypoints to 2D ones as the ground truth. GolfSwing enables us to
derive a set of more accurate 2D and 3D models, called GolfPose, to infer golfer-
with-club keypoints through regular videos. In particular, we take a fine-tuning
approach. First, a number of 2D state-of-the-art HPE models are fine-tuned,
including HRNet [31], ViTPose-H [37], and DEKR [8]. Second, we include club
keypoints and fine-tune MixSTE [39], the state-of-the-art 2D-3D lifting model.
The results may facilitate various downstream golf applications.

We test these 2D and 3D models fine-tuned from GolfSwing . Our experimen-
tal results indicate that the original 3D MPJPE of MixSTE can be reduced from
109.4 mm to 35.6 mm and, if we further include club with golfer, the 3D MPJPE
can be reduced to a 32.3 mm. For the 2D case, the original mAP of the tested
2D models can be increased from the range of 0.669-0.706 to 0.877-0.936; if we
further include club keypoints, the mAP can be increased to 0.918-0.956. This
simple-yet-effective approach not only validates the value of GolfSwing , but also
indicates the feasibility of pretraining a 2D/3D pose model on large datasets
like Human3.6M [11] and TotalCapture [33], which primarily focus on regular
daily poses, followed by fine-tuning it with a small human-with-object dataset.
The results can also be generalized to other precision sports that suffer serious
self-occlusion effects, like tennis, badminton, and cricket.

2 Related Work

Motion Capture Systems. They can be categorized as marker-based, marker-
less, and inertial sensor-based. Marker-based systems [34] utilize reflective mate-
rials to facilitate tracking. Through multiple cameras, the 3D locations of mark-
ers are positioned by triangulation. While accurate, such systems are more costly
and difficult to set up. Markerless systems [3] do not require markers and track
the optical flows of pixels in 2D image spaces for constructing 3D positions. In-
ertial sensor-based solutions are less costly and provide more degrees of freedom
[30]. However, error accumulation is a persistent problem.

Our GolfSwing dataset was recorded concurrently by RGB cameras and Vi-
con cameras (a marker-based system), thus featuring both 2D and 3D ground
truth. Markers are attached to both golfer and club. We follow the configurations
in [11] in our setup.
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Golf Kinematics. A lot of studies tried to understand golf kinematics. To
study golf swings and injuries, [44] recorded LPGA and PGA golfers’ motions
and collected statistics including angles and angular velocities of swings. The
differences in injury risks and swing techniques among male and female profes-
sional golfers on injury regions were studied. The correlation between lumbar
and hip joint rotation during a swing and its association with lower back pain
was investigated in [26]. To help beginners to correct their poses, HRNet with
Simplebaseline3d was employed in [15] to infer 3D poses in GolfDB [23]. Through
[16], a learner’s poses can be synchronized with coaches’ in database, thus pro-
viding visualization assistance to learners.

2D HPE. 2D HPE can be broadly categorized into two approaches: top-down
and bottom-up. The top-down approach [35,31,37] consists of two stages: object
detection and pose estimation. It transforms multi-person pose estimation into
single-person estimation. It typically achieves higher accuracy but incurs higher
computing cost. The bottom-up approach [2,8,38] first estimates all keypoints,
followed by poses construction. This approach is faster, but generally less accu-
rate.

3D HPE. Monocular 3D HPE has been widely explored. Solutions can be
categorized as one- and two-stage ones. The one-stage approaches [12,17] directly
regress 3D skeletons from input without intermediate 2D skeleton representa-
tions and are thus more computing-intensive. Two-stage approaches first employ
a 2D pose detector to identify skeletons and then elevate 2D skeleton sequences to
3D ones. References [36,41] try to predict 3D skeletons directly from 2D skele-
tons, and are thus highly sensitive to 2D detection accuracy. Since temporal
information of continuous skeletons may reduce depth ambiguity, TCN [28] con-
ducts dilated convolutions on adjacent 2D skeletons to estimate 3D ones. Pose-
Former [43] proposes a spatial-temporal transformer encoder to capture skeleton
structure and temporal activity. Also based on transformer, MixSTE[39] focuses
on the temporal features of individual keypoints and spatial features in each 2D
skeleton. Following the recent trend, our GolfPose takes a two-stage approach.

Human Pose Datasets. Consisting of 200,000 images and 250,000 person
instances, COCO Keypoints [18] defines 17 2D human keypoints and includes
annotations for occlusion situations, enabling significant progress under challeng-
ing conditions. For 3D datasets, Human3.6M [11] contains large indoor scenarios
with 15 daily actions. Also with 17 human keypoints, it includes various data
types such as RGB images, human silhouette, bounding box, depth, 3D pose, and
3D laser-scanned human models. MPI-INF-3DHP [24] incorporates both indoor
and outdoor scenes with diverse human poses, clothing, and occlusions. Total-
Capture [33] provides human keypoints, activity types, and synchronized sensor
data. 3DPW [22] is a 3D dataset collected from handheld cameras with sensors
attached to human limbs in outdoor environments. SportsPose [10] consists of
five types of sports in dynamic scenes.
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Fig. 1. Framework of GolfPose. (Blocks marked by gray represent our contributions.)

3 Methodology

Our goal is not only to enhance the performance of existing 2D and 3D HPE
models but also to include keypoints of club. Fig. 1 shows our research frame-
work. There are three phases. The first phase is to derive GolfSwing by Vicon
cameras [34] plus regular RGB cameras. In the second phase, we will fine-tune
detectors and pose models. The third phase is, from normal RGB videos, to infer
golfer-with-club keypoints and, for the case of 3D, to conduct 2D-to-3D lifting.

3.1 GolfSwing Dataset

GolfSwing is collected concurrently by 9 Vicon infrared cameras and 2 RGB cam-
eras that are time-synchronized. The environment setup and equipment specifi-
cations are shown in Fig. 1. The infrared cameras are placed around the golfer,
while the RGB cameras are placed in the front and the side of the golfer. The
area size is about 6.8m x 7.1m. The golfer stands within the capture region,
utilizing a 7-iron club.

Before recording, we calibrate all Vicon cameras with a Vicon wand. A center
point on the ground is regarded as the 3D origin. There are 6 volunteer students
serving as golfer. Each volunteer is tagged by 28 markers for 3D trajectory
tracking. The marker placement is designed similar to Human3.6M, from which
we can calculate 17 keypoints as ground truth. In addition, club is tagged by 5
markers for keypoint tracking. The details are depicted in Fig. 2.

Post-processing is required because a marker has to be captured by at least
two Vicon cameras in order to reconstruct its 3D location. Due to the speciality
of golf sports, markers can be easily occluded during a swing. Missing markers
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Person Golf club
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Fig. 2. The specifications of GolfSwing .

are replaced using Vicon Nexus’s algorithms. In the end, we obtain a set of highly
accurate 3D golf swing keypoints as ground truth.

The above steps have led to 3D keypoint ground truth. The last step is
to perform coordinate transformation to produce 2D keypoint ground truth.
This is done by projecting 3D keypoints onto RGB images. We follow Zhang’s
calibration algorithm [40] and define four coordinate systems (Fig. 1):

1. Vicon World Coordinate System (VWCS): the 3D coordinate system of Vicon
cameras, with the calibration wand as the origin.

2. Checkerboard World Coordinate System (CWCS): the 3D coordinate system
to relate real world with RGB cameras via an external checkerboard.

3. Camera Coordinate System (CCS): the 3D coordinate system used by RGB
cameras.

4. Pixel Coordinate System (PCS): the 2D coordinate system of RGB images,
with the top-left corner as the origin.

Then we conduct three coordinate transformations. The first one is VWCS-
to-CWCS transformation. We place Vicon markers at the origin, x-axis, and
y-axis of CWCS as the transformation basis for VWCS. By these markers, we
calculate the rotation matrix R′ ∈ R3×3 and translation matrix T ′ ∈ R3×1,
which lead to the Rigid Transformation Matrix C ∈ R4×4:

C =

[
R′

3×3 T ′
3×1

01×3 01×1

]
(1)

The second one is CWCS-to-CCS conversion. The Extrinsic Matrix E ∈ R4×4

is employed [40]. It is also composed of a rotation matrix R ∈ R3×3 and a
translation matrix T ∈ R3×1, and can be denoted by:

E =

[
R3×3 T3×1

01×3 01×1

]
(2)

The third one is CCS-to-PCS transformation. We utilize the Intrinsic Matrix
K ∈ R3×4, which consists of the focal length (fx, fy) and principal point (cx, cy).
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It is computed during the calibration algorithm [40]:

K =

fx 0 cx 0
0 fy cy 0
0 0 1 0

 (3)

By combining the above transformation matrices, we derive the projection from
a 3D point onto the 2D PCS:

s

uv
1

 = KEC


xw

yw
zw
1

 , (4)

where
[
xw yw zw 1

]T is a 3D point in VWCS,
[
u v 1

]T is its corresponding 2D
point in PCS, and s is the scale factor referring to the ratio of the physical
measurement unit to the image unit. By projecting all 3D keypoints to PCS, we
obtain 2D keypoint ground truth of GolfSwing . From the above 2D keypoints,
we further calculate the bounding boxes of golfer and club as ground truth.

Overall, GolfSwing comprises 6 golfers of heights 160-180 cm, who had taken
2-4 sports classes or joined school sports teams. Each subject swung 7 times,
yielding a total of 42 trails. We asked volunteers to swing differently each time.
After manual curation, 20 highly accurate trails were collected. We followed
“cross-subject” split, with 4 for training and 2 for testing. 17,738 frames were
collected, with 13,782 (78%) for training and 3,956 (22%) for testing.

To summarize, there are several challenges during data collection: (i) players’
diversity, (ii) recording environments, (iii) fast-moving swings, (iv) missing key-
points in Vicon videos, and (v) opt-in permission required for each volunteer.
These are conquered by asking players to swing different each time, cleaning
blurry frames (especially for club), and manually making up missing keypoints.
Unfortunately, recording in the wild is not feasible currently for Vicon’s IR cam-
eras.

3.2 Model Fine-Tuning

We take a top-down approach [42] for golfer-with-club keypoint detection. With
GolfSwing , we fine-tune object detector, 2D pose, and 2D-3D lifting models. In
particular, there are two alternatives for object and 2D pose detection, one by
detecting golfer and club separately and the other by detecting them jointly.

For object detection, we employ Faster R-CNN [29] and YOLOX [7]. Both
models are pretrained on the COCO 2017 dataset, which includes 80 object cate-
gories. We fine-tune them by GolfSwing (2D) dataset. For the separated method,
two categories, namely golfer and club, are detected. For the joint method, only
one golfer-with-club category is detected.

For 2D pose detection, we employ HRNet [31] and ViTPose-H [37], which
are pretrained on the COCO 2017 dataset for 17 human keypoints. We also
include DEKR, which is a bottom-up method, for comparison purpose. Refering
to Fig. 1, we then fine-tune them into three models by GolfSwing (2D).
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– For golfer pose, we modify the configuration file according to the Human3.6M
keypoint format. The backbones of the above three models are initialized
by pre-trained weights, and we retrain their keypoint heads from scratch,
leading to 17 keypoints as output.

– For club pose, we also use the backbones of the above three models and load
their pretrained weights. Then we modify their prediction heads for 5 club
keypoints and fine-tune them by GolfSwing (2D). The club keypoints are
shaft, hosel, heel, toe down, and toe-up.

– For golfer-with-club pose, the same fine-tuning is executed except that there
are 17+5 keypoints from prediction heads as output.

For 2D-3D lifting, there has been extensive research [28,21,43,39]. We choose
to fine-tune the state-of-the-art MixSTE [39]. We follow its design and extend
the dimensions of the model to include 5 extra club keypoints. The process is
shown in Fig. 3(a). The input to the model is a sequence of T 2D poses XT,G+C ∈
RT×(G+C)×2, where G and C are the numbers of golfer and club keypoints, re-
spectively. First, we project each keypoint to dm dimensions, leading to a higher-
dimension feature map X̂T,G+C ∈ RT×(G+C)×dm . Then, to preserve positional
information, the extended spatial embedding matrix Es-pos-ext ∈ R(G+C)×dm

and pre-trained temporal embedding matrix Et-pos ∈ RT×dm are applied. (Note
that the pre-trained embedding Es-pos ∈ RG×dm , which is trained on human
keypoints only, can not be directly fine-tuned.) Therefore, we randomly initial-
ize Es-pos-ext for retaining the positional information of both golfer and club
during fine-tuning. Subsequently, X̂T,G+C will be iternately learned for l iter-
ations between Spatial Transformer Block (STB) and Temporal Transformer
Block (TTB). Finally, the dimension dm is reduced to 3 by the Regression Head,
leading to a keypoint sequence YT,G+C ∈ RT×(G+C)×3.

The modified STB and TTB transformer blocks are shown in Fig. 3(b). We
follow the transformer encoders designed in [6,43,39]. STB is to learn the spa-
tial relationships among keypoints in each frame. Frames are sent one-by-one to
STB. With the pre-trained weights of MixSTE, the multi-head self-attention of
STB already effectively preserved the spatial relation of keypoints for regular
human activities. During fine-tuning, for each frame at time t, its (dimension-
incremented) keypoints, denoted by it,n ∈ Rdm , n = 1...(G+C), are regarded as
a sequence of tokens by STB to enhance their spatial relation-capturing capabil-
ity, such as inter-golfer, inter-club, and golf-club keypoints’ relationships. On the
other hand, the trajectories of all keypoints along the temporal dimension are
also sent one-by-one to TTB. For each trajectory n, n = 1..G+C, its (dimension-
incremented) keypoints, denoted by in,t ∈ Rdm , t = 1...T , are regarded as a se-
quence of tokens by TTB to enhance their temporal relation-capturing capability.
Overall, these two blocks alternately strengthen the correlations of keypoints in
spatial and temporal dimensions, respectively.

This model is fine-tuned end-to-end in a supervised manner. We adopt the
same loss functions: Weight Mean Per Joint Position Error (W-MPJPE) Lw

and Mean Per Joint Velocity Error (MPJVE) Lv [28]. Additionally, we adopt
Temporal Consistency Loss (TCLoss) Lc to improve motion smoothness [9].
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Fig. 3. (a) Extension of MixSTE for 2D-3D lifting and (b) extension of STB and TTB
transformer blocks to include club keypoints.

3.3 GolfPose Inference Model

GolfPose is built upon the above fine-tuned models. As shown in Fig. 1, it
accepts a RGB frame sequence of length (T,H,W,C) as input. If one chooses
to process golfer and club separately, we need to identify from each frame a
golfer bounding box Gb = (px, py, pw, ph, score) and a club bounding box Cb =
(cx, cy, cw, ch, score). Then, Pb and Cb are passed to the golfer and the club pose
models, respectively. Then golfer and club keypoints of all T frames are stacked
into tensors of (T, 17, 2) and (T, 5, 2), respectively, which are then concatenated
into a (T, 22, 2) tensor. If one chooses to process golfer and club jointly, the
process is similar, except that there is only one bounding box per frame and
we directly derive a (T, 22, 2) tensor. In either case, the concatenated tensor is
fed into the 2D-3D lifter. With joint golfer-with-club information, we shall show
that the lifter can better leverage the spatial-temporal correlations of keypoints
and thus achieve much higher accuracy.

4 Performance Evaluation

4.1 Implementation Details

As mentioned earlier, our 2D/3D models are pre-trained on the COCO 2017
dataset and the Human3.6M dataset, respectively, and then fine-tuned on Golf-
Swing 2D/3D. For GolfSwing , the training set (S1-S4) consists of 13,782 images,
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Table 1. Comparisons of 3D pose estimation models on our GolfSwing 3D dataset.

Strategy w/o Fine-tuned with Fine-tuned

Golfer Golfer Club
VideoPose3D [28] (N=17, T=243) 134.8 52.0 -
Attention3D [21] (N=17, T=243) 149.7 46.8 -
PoseFormer [43] (N=17, T=81) 107.8 40.3 -
MixSTE [39] (N=17, T=243) 109.4 35.6 -
GolfPose-3D(GC) (N=22, T=243) - 32.3 62.8

2D/3D keypoints, and 27,564 bounding box annotations, while the test set (S5,
S6) consists of 3,956 images, 2D/3D keypoints, and 7,912 bounding box anno-
tations. For object detectors, the evaluation metric is mAP@IoU . During fine-
tuning, we set a batch size of 8 and train the models for 30 epochs. The optimizer
is SGD, and the learning rate is set to 2.5e-3. The computing environments are:
CPU i7-12700K, GPU GeForce RTX 3090*2, CUDA 11.6, PyTorch 1.12.1, and
mmdetection [4] version 3.1.0.

For 2D pose models, the evaluation metric is mAP@OKS. The computing
environments are the same but with additional mmpose [5] version 1.3.0. During
fine-tuning, we set the batch size to 16 and train the models for 20 epochs. We
use Adam optimizer, with a learning rate of 1e-4. For the golfer’s 17 keypoints,
we assign different weights [1.0, 1.0, 1.2, 1.5, 1.0, 1.2, 1.5, 1.0, 1.0, 1.0, 1.0,
1.0, 1.2, 1.5, 1.0, 1.2, 1.5] to them when calculating MSE loss. For the club’s
5 keypoints, we assign weights [1.6, 1.9, 2.0, 2.0, 2.0] to them. The golfer-with-
club’s keypoionts are given weights similarly.

To fine-tune MixSTE, in addition to extending to 22 keypoints, we perform
data augmentation on GolfSwing to enhance robustness. We rotate each 3D
pose by 90 degrees and project it onto the 2 RGB cameras. So the dataset
quadrupled, effectively rendering additional perspectives of 2D poses. We divide
keypoints into five groups (head, torso, upper limbs, lower limbs, and club) and
define the weight vector W = [1.5, 1, 2.5, 4, 4]. The frame length T = 243 and
the Adam optimizer is employed with a learning rate of 4.0e-5 and a decay of
0.98 per epoch. The batch size is 512 and the model is fine-tuned for 60 epochs.
The computing environments are: CPU i7-12700K, GPU GeForce RTX 3090*2,
CUDA 11.6, and PyTorch 1.10.1.

4.2 Performance Comparison

Quantitative Results. We compare GolfPose against four 3D models Video-
Pose3D [28], Attention3D [21], PoseFormer [43], and MixSTE [39] on the Golf-
Swing dataset. Among them, MixSTE is the current state-of-the-art in Hu-
man3.6M. We use the 2D pose ground truth as input to compare the predicted
3D poses by the MPJPE metric. We use the default hyper-parameters of these
four models during fine-tuning. As Table 1 shows, these four models all improve
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Table 2. Comparisons of 2D pose models on our GolfSwing 2D dataset. (G, C, and
GC mean fine-tuning for golfer only, for club only, and for both, respectively. “Metric”
means the range of keypoints in calculating AP and AR.)

Model Source model Metric AP AP50 AP75 AR AR50 AR75

GolfPose-2D(G) HRNet

APgolfer

ARgolfer

0.884 1.000 1.000 0.887 1.000 1.000
GolfPose-2D(GC) 0.899 1.000 1.000 0.916 1.000 1.000
GolfPose-2D(G) ViTPose-H 0.887 1.000 1.000 0.898 1.000 1.000
GolfPose-2D(GC) 0.901 1.000 1.000 0.915 1.000 1.000
GolfPose-2D(G) DEKR 0.869 1.000 0.898 0.888 1.000 0.904
GolfPose-2D(GC) 0.917 1.000 0.968 0.927 1.000 0.973

GolfPose-2D(C) HRNet

APclub

ARclub

0.857 0.990 0.947 0.882 0.997 0.957
GolfPose-2D(GC) 0.949 1.000 0.990 0.955 1.000 0.999
GolfPose-2D(C) ViTPose-H 0.870 0.990 0.948 0.887 0.996 0.953
GolfPose-2D(GC) 0.942 1.000 0.990 0.956 1.000 0.998
GolfPose-2D(C) DEKR 0.858 0.990 0.946 0.888 0.999 0.951
GolfPose-2D(GC) 0.977 1.000 1.000 0.982 1.000 1.000

GolfPose-2D(GC)
HRNet

APgolfer−club

ARgolfer−club

0.915 1.000 1.000 0.930 1.000 1.000
ViTPose-H 0.925 1.000 1.000 0.930 1.000 1.000
DEKR 0.942 1.000 1.000 0.945 1.000 1.000

HRNet [31] -

APlimb

ARlimb

0.701 1.000 0.948 0.731 1.000 0.954
GolfPose-2D(G) HRNet 0.918 1.000 1.000 0.939 1.000 1.000
GolfPose-2D(GC) HRNet 0.956 1.000 1.000 0.962 1.000 1.000
ViTPose-H [37] - 0.706 1.000 1.000 0.730 1.000 1.000
GolfPose-2D(G) ViTPose-H 0.936 1.000 1.000 0.947 1.000 1.000
GolfPose-2D(GC) ViTPose-H 0.941 1.000 1.000 0.948 1.000 1.000
DEKR [8] - 0.669 1.000 0.979 0.689 1.000 0.988
GolfPose-2D(G) DEKR 0.877 1.000 0.868 0.887 1.000 0.871
GolfPose-2D(GC) DEKR 0.918 1.000 0.927 0.924 1.000 0.935

significantly after fine-tuning, implying the contribution of GolfSwing . After fine-
tuning, MixSTE performs the best. Encompassing club information, GolfPose
generates N = 22 keypoints and outperforms the other methods, which only
yield N = 17 golfer keypoints. This indicates that including object is helpful
for pose estimation. After fine-tuning, GolfPose achieves the lowest MPJPE of
32.3 mm for golfer keypoints. In fact, the club’s MPJPE=62.8 mm because its
fast-moving nature causes blurry effects. Even under such a condition, it still
proves the importance of including club for golfer pose estimation.

Next, we consider the 2D pose estimation results, including golfer-only, club-
only, and golfer-with-club cases. Table 2 presents two types of results: HRNet
and ViTPose-H represent the top-down approach, and DEKR represents the
bottom-up approach. If we fine-tune for golfer only (G) or for club only (C) by
GolfSwing 2D, ViTPose-H performs the best with mAP=0.887 and 0.870, re-
spectively (underlined). If we fine-tune for both golfer and club (GC), all models
are further improved after fine-tuning. DEKR achieves the highest mAP of 0.917
in golfer’s keypoints, of 0.977 in club’s keypoints, and of 0.942 in all keypoints
(boldface). These results indicate that including club benefits golfer keypoint
detection, and reversely including golfer benefits club keypoint detection.

Finally, we compare the pre-trained and the fine-tuned models. Since COCO
and Human3.6M define skeleton differently, we have to take the 12 common key-
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HRNet (N=17) GolfPose-2D(GC) (N=22) MixSTE (N=17) GolfPose-3D(GC) (N=22)

Fig. 4. Qualitative comparisons on subject S5. (GT=dashed line; prediction=solid line;
red=right hand; green=left hand)

points between them (which include shoulders, elbows, wrists, hips, knees, and
ankles). The results are shown in the last section of Table 2. For each source
model (HRNet, ViTPose-H, and DEKR), our fine-tuned GolfPose does improve
mAP significantly. Overall, using golfer-with-club data to fine-tune HRNet per-
forms the best, achieving mAP= 0.956. This implies the value of GolfSwing
that makes 2D pose estimation more stable and accurate, which can further
contribute to the subsequent 2D-3D lifter.

Qualitative Results. Fig. 4 presents some qualitative results. The visualization
is from S5 of GolfSwing . The results show the improvement from the pre-trained
model to the fine-tuned model. Notably, even when hands are partially occluded,
GolfPose-2D and -3D can still detect keypoints quite accurately.

Inference speed. Regarding inference speed, GolfPose mainly involves a fine-
tuned 2D golfer pose model, a fine-tuned 2D club pose model, and a fine-tuned
2D-3D lifter. The first two models, when running on an i5-12500 CPU and
GeForce GTX 1080 Ti GPU, achieve 27.25 and 27.3 FPS, respectively. The
third model, when running on an i5-13400 CPU with a GeForce RTX 3060
GPU, reaches 6.67 FPS.

4.3 Ablation Study

Object Detection. Table 3 compares the case of detecting golfer and club
separately and the case of detecting them jointly. We test two object detectors:
Faster R-CNN and YOLOX-s. There is clear advantage of detecting them jointly.
Contrary to intuition, when each individual object’s detection is low, jointly
detecting them helps improve detection rate. With joint detection, YOLOX-s
outperforms Faster R-CNN. Additionally, YOLOX-s boasts a higher inference
speed of 88.84 FPS compared to Faster R-CNN’s 14.19 FPS. Therefore, we adopt
YOLOX-s as our object detector.
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Table 3. Ablation study on separate and joint object detection.

Model Datasets Class AP AP50 AP75

Faster R-CNN
(ResNet50-FPN) Coco + GolfSwing

Golfer 0.940 1.000 1.000
Club 0.896 1.000 0.989
G-w-C 0.970 1.000 0.990

YOLOX-s
(CSPDarknet) Coco + GolfSwing

Golfer 0.920 1.000 1.000
Club 0.911 1.000 0.998
G-w-C 0.984 1.000 1.000

Table 4. Ablation study on the number
of club keypoints.

MPJPE
(mm)

Number of keypoints
17+0 17+1 17+2 17+3 17+4 17+5

Golfer 35.6 29.5 30.5 30.8 32.3 32.3
Club - 50.9 59.6 62.9 61.4 62.8

Overall 35.6 30.7 33.6 35.6 37.9 39.2

Table 5. Ablation study on fine-tuning
from Human3.6M.

MPJPE (mm) Train from scratch Fine-tuning

Golfer 48.5 32.3
Club 112.9 62.8

Overall 63.2 39.2

Number of club keypoints. In Table 4, we further consider the effect of the
number of club keypoints. We denote the method by 17+ i, where i = 0..5 repre-
sents the number of club keypoints (when 0 < i < 5, we choose keypoints c1 to ci
in Fig. 2). When we start to add club keypoint, we observe significant improve-
ment on both golfer and golfer-with-club detection accuracy (from error=35.6
mm to 29-32 mm for golfer). However, adding more keypoints results in slight
increases of error. We suspect the reason to be the relative slower movement of
the grip part as opposed to the much faster movement of the head part of club.
As mentioned earlier, it is more difficult to detect fast-moving keypoint. There-
fore, when the value of i increases, these keypoints (of relative lower accuracy)
also confuse our model.

Effect of fine-tuning. We consider the same structure of GolfPose that is
trained from scratch on GolfSwing for 80 epochs (i.e., without using the pre-
trained weights from MixSTE). From Table 5, it validates the benefit of the
pretrained weights from MixSTE (which reduces error from 48.5 mm to 32.3
mm for golfer). That is, a large amount of information is carried over from the
pre-trained weights obtained from Human3.6M. Even for club, the error is re-
duced from 112.9 mm to 62.8 mm.

5 Conclusions

This work contributes in deriving the GolfSwing dataset, which includes keypoint
ground truth of 2D and 3D golf swing actions. It also contributes in deriving
the GolfPose framework, which can be fine-tuned from existing object detection
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and pose estimation models, for inferring golfer-with-club keypoints simultane-
ously. The results imply that including auxiliary objects, such as club, with
even very few keypoints of a small dataset can improve human pose estimation
significantly. Nonetheless, detecting club poses in complex scenes is a challenge.
Future improvement on club pose estimation may further improve overall perfor-
mance. This approach can be extended to other sports, such as baseball, cricket,
badminton, and tennis, where players have an object at hand.
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